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ABSTRACT

Finline discontinuities are analyzed by means

of mde matching technique and spectral domin

technique. Numerical results are given.

INI’RODUCTION

With increasing activities inmillimter wave

field, more attention was paid to the finline

technique for development of millimeter-wave

integrated circuits. Wring the last decade a

great many of work have been done to amlyze the

dispersion characteristics and impedance of

finlines [1][2][3]. On the contrary, there are

relatively few papers concerning the discontinuities

of finlines. It is necessary to know the equivalent

parameters of finline discontinuities in computer–

aided-design of active and passive microwave

circuits. Hennawy and Schiimnmn [4] analyzed fin–

line discontinuities such as steps,notches and

patches byusingmde analysis. Sorrentino and Itoh

[5] evaluated the discmtintity by carrying out

transverse resomnce analysis. Helard, Citeme et al

[6] have treated finline single andmltiple steps

by using de matching technique and spectral

domainmthod.

In present paper, the finline notch and patch

are analyzed by a method similar to [6]. Eut

s-try of the configuration is taken advantage of

so that the evaluation is labx-saving.

EQUIVALEIW CIRCUITS OFNUNXANDPATCH

The structures to be investigated are shown

DISCONTINUITIES

Si–fan Li

Radio Engineering

Technology, Nanji~, China

in Fig.1 in which (b) is a fird.ine notch and (c)

is a finline patch. It is noticed that they are

both symmetrical structure. However, there is no

limitation on the locations of finline slots.

Usually, a notch is replaced by a~network and

a patch by a T network.

For a sytmmtrical two port network the

s-trical plane beccxnes a magnetic wall in the

case of even tie excitation and an electric wall

in case of odd tie excitation. Hence only one

half sectionof thenetwrk is needed to be

considered as shown in Fig. 3. The scattering

pararwters of the -original two port network

can then be expressed as:

(1)

(2)

*ere % (or $’1) is the reflection coefficient

of even–rode (or cdd-mde) half-section network.

Model

transverse

FWMULATIONOF PROBLEM

analysis is carried out at first. The

fields at the left of junction plane

which is the interface between waveguide I and II

are expressed in terms of mde functions.

i=l

(3)

(4)
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where ~ is the i~h mode voltage of forward wave,

V~” is the ith nmde voltage of backward wave,

..& .
i$s the ithmcde normlized transverse

electric field mde function,

-I
hiT is the ith rode normalized transverse

magnetic field mxle function.

For even-rode excitation, the fields in

waveguide II can be expressed as:

N

(5)

(6)

j=l

Pwhere . is the propagating constant of the jth

male i~waveguide II. 1 is the half width of the

patch or notch.

Einploying the fields continuity conditional

junction plane, we have

M N

M N

I ~vI+ _ vI–)~l
i i iT

!ll ;ll=j ~Vjsi~J jT (8)

i=l j=l

Taking cross prduct of (7) with%ll* jT (j=l,2,

. . ..N) and integrating over waveguide II yield the

I–
relationship between VI+, V

ad VII. ~11* is
iT.

~11
the conjugate function of h. . Similarly inner

jT
prcduct should be carried out for (8) with~~~ . In

the above processes the orthogonal condition of

mode functions have ken used. Consequently, wehave

[Ql(l~l+l + l@-l) = [Rell~ll~

[H]([@+] - [~1-]) = [Tej[@l]

where [Qj is NXM matrix and its element

(9)

(lo)

‘s Quv

[R? is NxN diagonal matrix and its element is

R; = Sucos$l p~l Ip: I

{

1, if ( ~k)2>O;
Su=

–1, if ( }a)2g0.

[H] is MxMdiagoml matrix and its element

is H
Uu’

HW = s&/1/g:l

~~ is the propagating constant of the uth mode

in wavegyide I.

[Te] is MXN matrix and its element is T:,

T:= jsin~>~ ~~fi~fi ds

‘I

[iI+] = [V:,. ..,v; IT

[71-J = lV:-,. ..,V;- IT

lWJ =lvy,. ..,v: jT

After some algebraic manipulation [@l] is elimi–

nated and the relationship between forward waves

and backward waves is obtained.

[V1-l=( lHl+[Tel [Rel-l[Ql)-f [H]-[~] [Re]-l[Q] ) [71+]

—— [seJ [F+] (11)

%1 can then be obtained from [Sej.

For cdd tie excitation, the process is similar

to even tie case and the fiml result is

[#-]=( [Hj+[TOj [RO]-l[QJ)-l( [H]-[TO] [ROJ-l[Q] ) [71+]

= [sOj[F+] (12)

where [To] is MxN matrix and its element T% is

J

T;= COS ~’;l ~~ f ~; S ds

‘I

[Ro] is NXN diagonal matrix and its element

From eqoation (12) S~l can be deduced as before.
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SPECI’R&lXWIAIN TECHNIQUE

The propagating constants of dominant and

high-order males are usually needed. The character-

istic equation is obtained by employing spectral

domain imnitance approach as usual.

where ~ %“ are Fourier transformations of slot
x’

fields. ~ x, ~z are Fourier transformation of surfs=

currents. 1? T
xx’ X2 ““”

etc. are dyadic Green-s

functions in spectral domain. ‘Ihe Ex and Ez can

k expressd as follows:

*’re ~xiad ~zj are the basis functions of slot

electric fields in the direction of x– and z–axis

respectively.

By Galerkin’s method, we obtain M+N linear

simultaneous equations of Ci and d.. The propaga-
J

tion constants are calculated one by one from the

equation which is derived by putting the mstrix

determinant equal to zero.

The integrations encountered previously my

be carried out by Parseval’s theorem. For example,

the element of the matrix [Q] is ~ as follows.

~=J #
~ >,<

“TKhuT . ~ds

‘II

1*

Zj
%+mh2—— ——.

2b
F(y) dy

n=–
0

where

F(y)= ~W(dn,y)@#$,y)-tiW(dn,y)fi;(dn,y)

Ekfore integration the finline fields must be known.

The solution of finline fields in spectral domain

are as follows:

ilz(dn,y) = Ae(~n) sinhy1(hl+h2+D-y)

x2z(dn,y) = Be(dn) sinh Y2(h1+D-y)

+ Ce(dn) cosh~2(hl+D-y)

ti’z(~n,y) =De(dn)

tilz(dn,y) =Ah(@n)

\z(dn,y) =Bh(dn)

+ C%n)

fi3z(~n,y) =Dh(dn)

sinh>ly

cosh~l(hl+h2+D-y )

sinh~2(hl+D-y)

cosh ~2(hl+D-y)

cosh ~ly

The other field compliments canbe derived from

Zz and%z. Instead of extensive algebraic manipu–

lationa convenient matrix technique [2] is used

to solve the coefficients Ae,Be,...,C ,Dh ‘. Ihe

folIowing equation satisfying the lxmndary

conditions gives out the values of coefficients.

[l?@[ul = [El

where
[u] = [Ae,Be,...,Ch,DhlT

[H] = [O, O, . . . . ..EX.EZIT

The above equation canbe solved once /“s and

slot field of interested tie are found.

NUMERICALRESULTS

The notch and patch inside WR-28 waveguide are

analyzed and the calculated equivalent para~ters

are given in Fig.4.

CONCLUSION

The combination of mile-matching technique

ard spectral domain technique serve as a powerful

tool to treat finline discontfnui~ies problems

such as finline notch and patch. Numerical results

are given. The authors believe that the results

obtained by present methcd will find wide applica-

tion to millimeter wave band filter designs.
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Fig.1 Discontinuities in finline

*

(a)

‘;l‘a. =U,\
magnetic elec~ic

wall wall

-Y12 ‘11-Z12 ‘11-Z12

‘ll+YD1’Y12
(a) Notch (b) Patch

Fig.2 Equivalent circuits
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(a) parameters of a notch

Im(Zll+Z12)
-1m(z12)

I

3

2

1

W1.2.0 Iml
w =1.0 m

2

- 1

- 2

I 1 I I
o 0.5 1.0 1.5 l(mn)

(b) Parameters of a patch

Fig.4 Calculated results of a notch arid a patch.

f.35m, D=.254111n, &r=2.22,

(b) even-rode (c) cdd-mde ‘=1”778m’ ‘l=h2=3”429~”

Fig. 3
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