ANATYSIS OF FINLINE DISCONIINUITIES

Yi~yuan Chen

Si—fan Ii

Department of Radio Engineering

Nanjing Institute of Technology, Nanjing, China

ABSTRACT

Finline discontinuities are analyzed by means
of mode matching technique and spectral domain
technique. Numerical results are given.

INTRODUCTION

With increasing activities in millimeter wave
field, more attention was paid to the finline
technique for development of millimeter-wave
integrated circuits. During the last decade a
great many of work have been done to analyze the
dispersion characteristics and impedance of
finlines [1][2][3]. On the contrary, there are
relatively few papers concerning the discontinuities
of finlines. It is necessary to know the equivalent
parameters of finline discontinuities in computer-
aided-design of active and passive microwave
circuits. Hemmawy and Schiinemann [4] analyzed fin-
line discontinuities such as steps,notches and
patches by using mode analysis. Sorrentino and Itoh
[5] evaluated the discontinuity by carrying out
transverse resonance analysis. Helard, Citerne et al
[6] have treated finline single and multiple steps
by
domain method.

using mode matching technique and spectral
In present paper, the finline notch and patch
are analyzed by a method similar to [6]. But
symmetry of the configuration is taken advantage of

so that the evaluation -is labor-saving.

EQUIVALENT CIRCUITS OF NOTCH AND PATCH

The structures to be investigated are shown
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in Fig.1l in which (b) is a finline notch and (c)
is a finline patch. It is noticed that they are
both symmetrical structure. However, there is no
limitation on the locations of finline slots.
Usually, a notch is replaced by a ® network and
a patch by a T network.

For a symmetrical two port network the
symmetrical plane becomes a magnetic wall in the
case of even mode excitation and an electric wall

in case of odd mode excitation. Hence only one
half section of the network is needed to be
considered as shown in Fig. 3. The scattering
parameters of the -original two port network

can then be expressed as:

_ _ L e O

S1q = Spp = %(5q3 + 5q4) (1)
_ _ 1 e _ o]

Syp = Sg1 = %(5q1 = S1¢) (2)

where Sil (or Sil) is the reflection coefficient
of even-mode (or odd-mode) half-section network.

FORMULATION OF PROBLEM

Model analysis is carried out at first. The
transverse fields at the left of junction plane
which is the interface between waveguide I and II
are expressed in terms of mode functionms.
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where V? is the ith mode voltage of forward wave,

Vi— is the ith mode voltage of backward wave,
’éiTis the ith mode normalized transverse

electric field mode function,

T

iT is the ith mode normalized transverse

magnetic field mode function.
For even—-mode excitation, the fields in
waveguide II can be expressed as:

N

=Z V .cos I.Il 31.1 (5)
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where /g?is the propagating constant of the jth
mode in waveguide II. 1 is the half width of the
patch or notch.

Employing the fields continuity condition at
junction plane, we have

M N
I+ I\ I 11, I
Z (Vi + Vi ) e = Z VJ.cos’Bj 1 ejT (7)
i1 a
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Taking cross product of (7) with ?1:5%0 (3=1,2,

.++,N) and integrating over waveguide II yield the

- )
relationship between VI+, VI hﬁ%x
the conjugate function of .1?11,% Similarly imner
product should be carried out for (8) with 'é?

= and VT, is

T.In

the above processes the orthogonal condition of
mode functions have been used. Consequently, we have
= [R°1I7 )

[QIUTH) + (¥ ) (9)

H] (V] - (0] = (87 (10)

where |Q] is NXM matrix and its element is qu
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z ds

IR is NxN diagonal matrix and its element is
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|H| is MM diagonal matrix and its element
isH_,
uu
I* I
How = S /184!
)651 is the propagating constant of the uth mode
in waveguide I.

(T®] is MxN matrix and its element is T ,
uv

* =TT o
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After some algebraic manipulation [\711] is elimi-
nated and the relationship between forward waves

and backward waves is obtained.
[V 1=cul+ L8 ) RE T QD A ml-[18 1 1Rt QD (7]
- [s°] (VM)

can then be obtained from [S%].
For odd mode excitation, the process is similar

(11)

(<]
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to even mode case and the final result is

(T 1= +L1° ) (R ) L (HI-[1°1 1RO Q) (75
— [0 (12)
where [T°] is MXN matrix and its element T° .
uv is
T3V= cos /Blilj 'élIJ,; X E\Ié .2 ds
51
LRO] is NXN diagonal matrix and its element
is R
uu.
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From equation (12) S‘il can be deduced as before.



SPECTRAL DOMAIN TECHNIQUE

The propagating constants of dominant and
high-order modes are usually needed. The character—
istic equation is obtained by employing spectral
domain immitance approach as usual.

~ ~ ~ ~

Yxx sz [Ex _ r Jx

Y Y | [E [’j’
ZX 2z Z z

~ e
where Ex’ EZ are Fourier transformations of slot

~ o~
fields. JX JZ are Fourier transformation of surface
= -
currents. Y, , Y _ ... etc. are dyadic Green’s
xx’ "Xz

functions in spectral domain. The E and EZ can

be expressed as follows:

C. .
i4xi ,

xiand 72

Zd

i are the basxs functions of slot

J 72J
where g

electric fields in the direction of x- and z-axis
respectively.

By Galerkin’s method, we obtain M+N linear
simultaneous equations of c; and dj. The propaga~
tion constants are calculated one by one from the
equation which is derived by putting the matrix
determinant equal to zero.

The integrations encountered previocusly may
be carried ocut by Parseval’s theorem. For example,

the element of the matrix [Q] is qu as follows.

S

I
quzj VTXhT

h1+D+h
. F(y) dy
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where

Fiy)="E_, ,y)H (< ,y )-—E (o ,y)H L ,y)

Before integration the finline fields must be knowmn.
The solution of finline fields in spectral domain

are as follows:

~ e
Elz(dn,y) = A (eln s.mhy1 = 2+D—y)
22( oL ,y) = B®(«_) sinh Yoy +D-y)

+ Ce,(dn) cosh yz(h1+D—y)
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?Izz(o(n,y) = Bh(d ) sinhyz(h1+D—y)
+ @) cosh Y., (hy+D-y)
n 2y
(of,y) = D™« ) coshY
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The other field components can be derived from
Ez and ’Itllz. Instead of extensive algebraic manipu-

lation a convenient matrix technique [2] is used
to solve the coefficients Ae,Be,... ,Ch,Dh. The
following equation satisfying the boundary
conditions gives out the values of coefficients.

(v = (8

where [U] _ [Ae,Be’. -,Ch,Dh]T
~ o~ T

(E] = [0,0,..... ELE,]

The above equation can be solved once A's and
slot field of interested mode are found.

NUMERICAL RESULTS

The notch and patch inside WR-28 waveguide are
analyzed and the calculated equivalent parameters

are given in Fig.4.
CONCLUSION

The combination of mode-matching technique
ard spectral domain technique serve as a powerful
tool to treat finline discontinuities problems
such as finline notch and patch. Numerical results
are given. The authors believe that the results
obtained by present method will find wide applica-

tion to millimeter wave band filter designs.
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Fig.l Discontinuities in finline
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Fig.4 Calculated results of a notch and a patch.
£=35 GHz, D=.254 mm, £r=2.22,

5=1.778 mm, h1=h2=3.429 mm.



